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Abstract 

The grid method can be used to construct different 
quasiperiodic tilings with fourfold symmetry made of rhom- 
buses and squares by altering the topology of the multigrid. 
Three examples are shown and their differences are high- 
lighted. 

dimensional lattice. The octagonal superlattice in the tiling 
is seen along the dotted lines. The self-similarity of the 
tiling is evident from the inflated rhombuses and squares. 
There are two types of inflated rhombuses and one type of 
inflated square during the inflation. Effectively the sym- 
metry of the octagonal tiling is reduced to four by a decor- 
ation while retaining its other properties. 

Quasicrystals discovered by Shechtman, Blech, Gratias & 
Cahn (1984) have been very successfully modelled by Pen- 
rose tilings (Penrose, 1974; Kramer & Ned, 1984; Elser, 
1986; Duneau & Katz, 1985; Gahler & Rhyner, 1986; Bak, 
1986). One of the standard methods of constructing the 
Penrose tilings is the dual-grid method (de Bruijn, 1981). 
A grid is a set of parallel lines and a multigrid is the 
superposition of ordinary grids. The dual map to the multi- 
grid constructs the quasiperiodic tiling. In fact, the 
definition of quasiperiodicity originated from the grid 
method (Steinhardt & Ostlund, 1987). A discussion of the 
grid method has been provided by Socolar (1989) for tilings 
with eight-, ten- and twelvefold symmetries. While the usual 
discussions on quasiperiodicity are concerned with five- 
fold symmetry, we earlier showed that nonperiodic tilings 
with two-, three-, four- and sixfold symmetry can be con- 
structed by self-similarity (Baranidharan, Balagurusamy, 
Srinivasan, Gopal & Sasisekharan, 1989; Sasisekharan, 
Baranidharan, Balagurusamy, Srinivasan & Gopal, 1989). 
Recently, Clark & Suryanarayan (1991) presented a non- 
periodic fourfold-symmetry tiling constructed by self-simi- 
larity. In the past, there have rarely been published 
examples of tilings with reduced symmetries that are con- 
structed by the multigrid method although the construction 
possibility itself is well known. The grid vectors as well as 
the grid-line spacings can be altered to produce a 
quasiperiodic tiling with a desired symmetry. Some 
examples are illustrated here. 

The multigfid from which the octagonal tiling is construc- 
ted contains a single spacing in each symmetry direction. 
The symmetry of the octagonal tiling can therefore be 
reduced by increasing the number of spacings in each 
direction. Fig. l (a )  is a multigrid in which the spacing in 
each direction is given by ABABABAB . . . .  The dual to 
the grid is constructed with squares and rhombuses and it 
is shown in Fig. l(b). This tiling possesses perfect fourfold 
symmetry and yet is quasiperiodic. Since the multigrid in 
Fig. l (a)  can also be considered as an octagonal grid plus 
a decoration (i.e. if we consider A, B as a single unit then 
it amounts to a single-spacing grid with a decoration) one 
can obtain this tiling by projection from a decorated four- 
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Fig 1. (a) The multigrid with two intervals in each direction spaced 
periodically. (b) The dual to (a), made of rhombuses and 
squares. The dotted lines show the octagonal superstructure. 
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Another way to construct a quasiperiodic tiling with 
fourfold symmetry is to use quasiperiodic spacing of the 
grid lines with two types of spacings. To obtain a multigrid 
with quasiperiodic spacing we exploit the irrational 
property of 1 + 21/2. The matrix whose largest eigenvalue is 
1 + 21/2 is given by 

(; 11) 
A quasiperiodic sequence of long and short intervals can 
be obtained by the recursive operation 

( ;  i )  ( A )  --> (ABBA)" 

A sequence obtained from the recursion is 
A B A B A A B A B A A B A B A B A  . . . .  We could have also 
written the recursion rule as 

and this will give the same sequence with a shift (although 
in many other cases like this the same sequence will not 
necessarily be obtained). 
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Fig. 2. (a) The multigrid in which the grid spacings are 
quasiperiodic. (b) A quasipcriodic tiling with fourfold symmetry 
constructed from (a). 

Now the grid can be constructed in which the spacings 
between the grid lines follow the above sequence. A portion 
of the multigrid is shown in Fig. 2(a). The dual to a section 
of the multigrid is shown in Fig. 2(b). As shown by dotted 
lines, there are larger and larger squares and rhombuses 
connecting various vertices characteristic of the self-simi- 
larity of the tiling. Self-similar tilings are expected to have 
strong local rules (Levitov, 1988). This tiling consists of 
vertices that are not found in the eightfold tiling. This tiling 
is not locally isomorphic to Fig. l(b).  An important aspect 
of this type of tiling is that, depending on the length scales 
A and B, the final tiling will be different. It is not at present 
clear how to obtain by projection the tilings that are 
obtained from quasiperiodic grids. 

We have seen two examples in which the symmetry is 
fourfold, self-similarity is present and yet not locally 
isomorphic. There is also another example where the sym- 
metry is fourfold and there is no self-similarity. To construct 
this tiling we start from a periodic but inequivalent grid. 
Fig. 3(a) shows grids with a single spacing in each direction 
but the spacings are different for the two grids. Fig. 3(b) 
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Fig. 3. (a) The multigrid with a single periodic but inequivalent 
spacing. (b) The dual to (a) is a quasiperiodic tiling that lacks 
self-similarity. 
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is a tiling corresponding to Fig. 3(a). Alternatively, this 
tiling may be obtained by the projection method in which 
the four-dimensional hyperlattice spanned by four 
orthonormal basis vectors (el, 2e2, e3, 2e4) is divided into 
two subspaces (el, e3 and 2e2, 2e4) each of two dimensions. 
Fig. 3(b) is not locally isomorphic to Fig. l (b)  or Fig. 2(b). 
Also, Fig. 3(b) does not possess the self-similarity property. 
It is therefore reinforced that not all quasiperiodic tilings 
have self-similarity as an essential property and therefore 
the self-similarity property cannot be used to establish the 
quasiperiodicity of a tiling, in contrast to the view of Clark 
& Suryanarayan (1991). Since quasiperiodicity implies a 
continuum in a higher-dimensional space, one should 'lift' 
(Levitov, 1988) a tiling obtained by self-similarity to a 
higher space to prove its quasiperiodicity. 

One can construct quasiperiodic tilings with rotational 
symmetries of order two, three and six by suitable choice 
of the starting grid with more than one spacing. The con- 
struction of three-dimensional tilings from a decorated four- 
dimensional lattice leads to potential models for incom- 
mensurate phases when the projection is made onto the 
octahedron. 
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